State-Space Control Design

& = Az + Bu
y=Cz+ Du

This is equivalent to the transfer function form studied previously.
Control Systems | Design a controller of the form u = «(x)

State Space Why do we need another control design procedure?

- More general

- Easily extends to multiple inputs and outputs
- Can capture nonlinear systems in this form too

Colin Jones
- Phase plane / geometry
- System safely and physical limitations can often be described as geometric
constraints in the motion of the state through the phase space

Laboratoire d’Automatique

- Optimal control
- Complex time-domain objectives can be easily specified in terms of the states

State-Space Design Procedure

1 State-Feedback Design 2 State Observer

Assume that the state is measured, Design a dynamic system to esti-
and design a static control law u = mate the state
Kz

= Ax + BKzx )
Design L, M and N so thatz ~ = .
Problem : We can't measure z! Recall: State-Variable Form

@ Combine controller and observer to provide a single, dynamic control law.

@ Add reference tracking.

Separation principle tells us that independent design of these elements is optimal.



Recall: Quick review on linear state-space Recall: Quick review on linear state-space

Write the following ODE in state-space form Write the following ODE in state-space form
6+ b0+ ch = du 6+b0+ch = du

Introduce state variables
1 =10
T2 =0
Take derivates
T = 0 = T2
dg=0=—b0—cO+du

= —bxe — cx1 + du

Write out the state-space equations

()-[2 2](@)

Linearization

In a later lecture, we will cover multiple ways of generating linear state-space
equations

- Linearization of nonlinear ODEs

- Static Feedback Linearization

- Nonlinear inversion

- Experimental linearization Dynamic Response

For now: Recall your system dynamique notes on linear state-space modeling



State-Space — Transfer Function State-Space — Transfer Function

Compute transfer function Compute transfer function
& = Az + Bu & = Az + Bu

y=Cx+ Du y=Cz+ Du

Take Laplace transform
sX(s) —x(0) = AX(s) + BU(s)
Solve for X (s)
X(s) = (s — A) ' BU(s) + (s — A)"'x(0)

The output is
Y (s) = CX(s)+ DU(s)
= (C(sI — A)"'B+ D)U(s) + C(sI — A)"'z(0)

Assuming zero initial conditions gives the transfer function

Y(S) —1
= = I—A) " B+D
G(s) 70) C(s ) 4
7 7
Compute transfer function Compute transfer function
s 77 2| s 177 2 Y
1o 0 I I 0
y:[l 2]:r y:[l Q]x

B 1 [1 2] s —12 |1
(s T)s+12 1 s+7[]0
. s+ 2

OS24 T7s+12



Poles are complex frequencies the system will respond at without a forcing function

Consider the system without the forcing function u
T = Ax

assume an initial state z(0) = xo.
pis a pole of the system if the system evolves as x(t) = e’ zo.

From the system dynamics
#(t) = pePxo = Ax(t) = Ae'xo
and therefore p is a pole if
Az = PTo

or if pis an eigenvalue of A.

Poles are complex frequencies the system will respond at without a forcing function

Consider the system without the forcing function «
T = Ax

assume an initial state (0) = zo.
pis a pole of the system if the system evolves as x(t) = e’'xo.

From the system dynamics
@(t) = pe’'xzo = Ax(t) = Aexo
and therefore p is a pole if
Az = pxo
or if pis an eigenvalue of A.

The poles are the solutions of the characteristic equation

det(sI —A) =0

Compute the poles

Compute the poles

. -7 —12 1
X = u
1 0 0
Poles are given by the characteristic equation

det(sI — A) =0

T +

-1 s

s+ 7 12]

=(s+T)s+12=5"+T7s+12

Poles are

- V-4,
= =4~
One can see that this is the same as the poles computed from the transfer function
s+ 2 _ s+ 2
24+ T7s+12  (s+4)(s+3)




Zeros are generalized frequencies at which the system will not respond to an input Compute the Zeros

z is a zero if u(t) = upe**

—yt)=0 |:

Take u(t) = upe®, then z(t) = woe™

& = ze*'wg = Ae*'wo + Buoe™ & {z[ —A —B]

Combining this with y = Cx + Du = Ce*'zo + Duge®’ gives

[

The zeros of the system are given by the expression

zI-A —-B
C D

zI-A —-B

det
e D

=0

Compute the Zeros

-7 —12 N 1
T = T u
1 0 0
y:[1 2]:{;
Canonical Forms
12 —1
J—A —-B 2T
det c D =det | —1 z 0
1 2 0
=24z

There is one zero at z = —2

Compare to the transfer function, and one sees we get the right result

s+ 2
Gs) = $2+T7s+ 12



How to Choose a State Representation Control Canonical Form

Two state representations can have exactly the same input-output behaviour Goal: Form that allows for simple modification of the system dynamics.
i = Az + Bu z = AZ + Bu
y=Czx+ Du o y=CZ+ Du

Consider the transfer function
We choose the state representation depending on what we're trying to achieve. Y(s) s+ 2

* Control canonical form — Used to design controllers

A Introduce an intermediary variable '
* Modal canonical form — Used to analyse oscillation modes y T2

- Observer canonical form — Used to design observers Y(s) = Y(s) . — ISER2N .
U(s) Xa(s) 1

State to output  Input to state

2o because this is a second order system

Input — State State — Output

State to output

Xz(s) o 1 s s
U(s) 82+ 7s+12 )1(/2((3) - TQ

Write the dynamic equation relating x» to the input u Convert to the time domain
u = o+ Tia + 1222 @ .
Yy==Te2+x2 =121+ T2
Introduce new state variable for the derivative - ) )
where we used the definition z2 = 21 from the previous slide

To = T1

Re-write (1) in terms of the derivative of the state z; Put it all together to get the control canonical form

1 =u— Tx1 + 1222 T1 _ -7 12 i 1 w

) T2 1 0 0
Input to state equations
x1
i1 =u— Tz + 1229 y:[l 1] .
.Z"z =T



Control Canonical Form Block Diagram - Control Canonical Form

Consider the transfer function

Y(s) bis"t 4+ byo15+ by _Y(s) _ s+2
G(s) = = G(s) = = > 1
(5) U(s) s"4as" 14+ an-15+an (3) U(s) s2+T7s+12
The control canonical form is
+ T1 1 T1 | T2 1 T2 +
—-a1 —Qz ... ... —an 1 U 4;0—' S S 2 —1@—»
1 0 0 0
A=|lO0O 1 0 ... 0 B— |0
: : : +
0 0 R | 0 0
C=1|by by ... ... by D=0
—12

It is also possible to convert to control canonical form if by is not zero (i.e,, if there
are n zeros, rather than n — 1). In this case, the expression for C is slightly more . .
Control canonical form block diagram

complex and D is non-zero.
- All dynamic blocks are integrators

17 - Output and input are weighted sums of the states 18

State Transformations State Transformation to Control Canonical Form

Goal: Convert from any representation to control canonical form.

Consider the state equations

& = Ax + Bu
Yy = Cx + Du Any representation Control canonical form
—N— —N—
This representation is not unique. Consider a change of variables given by the i = Azr + Bu 3= Az + Bu
. . - T — _ _
nonsingular matrix T' y=Cz+ Du y=Cz+ Du
r=Tz
The same dynamic system expressed in terms of the state z is now
&t =Tz=ATz+ Bu Target structure
3=T 'AT24+ T 'Bu
—a1 —as2 —as 1
y=CTz+ Du A= 1 0 0 B=1|o0
0 1 0 0

We get a new state representation for the same dynamic system
2= Az+ Bu A=T'AT B=T"'B
y=Cz+ Du C=T7"'c D=D

20



State Transformation to Control Canonical Form State Transformation to Control Canonical Form

The relationship between the state matrices is Relationship between the input matrices is
AT =774 4L B 1
- T 'B=|tB|=B=|0
Let the rows of T~ ! be ¢4, t2 and ts, and let A be in control canonical form tsB 0
—a1 —az —az| |t tA Combining with the equations from the previous slide gives an expression for ts
1 0 0 ta| = [t2A
0 1 0| |ts] |tsa ty = tsA ts [B AB AZB] =(0 0 1)
—
_ 2 Y —
We can write the transform matrix 7" in terms of its last row ¢s t1 =134 controllability matrix C
ty =tz A Finally, the last row of the transformation is given by
) = toA = t3A° ts = (0 0 1) ct
21 22
State Transformation to Control Canonical Form
General procedure
1. Form the controllability matrix
c= [B AB A’B ... A"‘lB]
2. Compute the last row of the inverse
bn = [0 0 ... 1} ¢! Control Law Design: Full State Feedback
3. Construct the transformation matrix
tnAn—l
tnAn72
T =
tn

Note : The system can only be put in controllable form if C is full rank

23



Control Law Design - Full State Feedback

Try a static linear control law

1
T2
u:—Kx:—[Kl Ky ... Kn]
Tn
u .
& = Ax + Bu . C — Y
u=—Kzx

With such a controller, we can place n poles (i.e., all of them).

Full State Feedback

Goal: Place the poles of the closed-loop system at the given locations
8§ =51,82,...,5n
The closed-loop dynamics are
&= Ax — BKx
with the poles given by the characteristic equation
det(s] — (A — BK)) =c(s; K) <« Polynomial linearly parameterized by K
Target characteristic equation is

(s —s51)(s—52) (s —8n) = ac(s) + Polynomial

Idea: Equate coefficients of ¢(s; K) = ae(s) in order to choose K.

Control Law for a Pendulum

(=)= ()

Design a linear state-feedback controller to place both closed-loop poles to —2wo

0
1

u

i.e., double the natural frequency and increase damping ratio from 0 to 1.

Control Law for a Pendulum

WEEIEE

Design a linear state-feedback controller to place both closed-loop poles to —2wo

0
1

u

i.e., double the natural frequency and increase damping ratio from 0 to 1.

Target characteristic equation:

ae(s) = (s 4 2wo)? = 5% + 4wos + 4wd

Parameterized characteristic equation:

c(s;K)dct(sI(ABK))dct{[S 0:|[ 0 1

= s>+ Kas +wj + K1
Controller is

K= [Kl KQ] - [3w3 4w0}



Pole Placement in Control Canonical Form Pole Placement in Control Canonical Form

Consider pole placement in control canonical form The characteristic equation is
71al 73’2 73” (1) c(s;K) = 5"+ (a1 + K1)s" ' 4 (as + K2)s™ 2 4+ 4 (an + K,)
A= 0 1 0 .0 B= |0 K= {Kl Ky ... Kn} If the target characteristic equation is given by
. . . . . _.n n—1 n—2 L.
0 o 1 0 0 ac(s) =s"+a1s" Faas" T4+ an
The upper companion form matrix gives the closed-loop dynamics The control law is
—a1— Ky —ax—Ko ... ... —a,— K,
o= A = A ¢ K=|-a14+a1 —ax+oa - —an+an
1 0 0
A— BK = 0 1 0 0
0
0 0 1 0
The characteristic equation is
c(s;K) = 5"+ (a1 + K1)s" ' 4 (aa 4+ K2)s™ 2 4 -+ 4 (an + Ky)
27 28
Pole Placement in Control Canonical Form Pole Placement in Control Canonical Form
Procedure to place poles at desired locations {s;} given dynamic system (A4, B) Procedure to place poles at desired locations {s;} given dynamic system (A, B)
1. Compute transformation matrix 7' to convert to control canonical form (Ac, B.) 1. Compute transformation matrix 7' to convert to control canonical form (A., B.)
2. Compute control law K. to place poles at {s;} for (4., Be) 2. Compute control law K. to place poles at {s;} for (A, Bc)
3. Convert control gain back to original state K = K. 7! 3. Convert control gain back to original state K = K. T~ *

This process is written more succinctly as Ackermann’s formula

Ackermann’s Formula

Goal Choose controller gain K for the system (A, B) so that the closed-loop system
@ = (A — BK)z has the characteristic equation «(s)

K= [0 0 ... 1] Ca(A)
where a(A) is the desired characteristic equation evaluated at the matrix A

a(A) = A" + a1 A" L AT,

29 29



Compute full-state linear controller such that the closed-loop poles are —6 and —5 Compute full-state linear controller such that the closed-loop poles are —6 and —5
for the following system. for the following system.
i 1 1 o4 1 u i 1 1 o4 1 u
) 0 ) 0

Target characteristic equation
a(s) = (s +6)(s+5) = s> +11s + 30

Ackermann’s formula

K,[o 1]6*1a(A)
_ [0 1] [B ABT1 (A% 1+ 114 + 301)
bl ] (F el el )
= |14 7]

30 30

Pole Placement - Summary

A static linear controller u = — Kz can place the closed-loop poles arbitrarily

Required condition: Controllability matrix C must be invertible.

Controllability

31



Consider the two different state-space models, and their transfer functions

&= —2c+2u 7;{2 o], [2],
0 -1 0
y =3z
=P
U Y
G(s)=C(sI —A)'B G(s)=C(sI —A)'B

s+ 2

[ [ -5

- The effect of the input on the output is the same in both cases!
- While state z2 impacts the output, we cannot influence it via the input
- However, noise may well drive z2

Controllability is a function of the state-space representation

3(2+ 2)7'2 _ [3 2} <[3 (j - [—02 olbl {

32

State Transformations and Controllability

Question: Does a state transformation impact the controllability of the system?

Consider a system defined by the matrices (A, B), and the system (A, B)
transformed by the invertible matrix 7.

C.=[B AB ... A"B]

c.=[B AB ... A"'B]
=[r'p TATT'B . TAMTT B
=T7'C,

. Cyis nonsingular if and only if C; is

State transformations do not impact controllability

34

Controllability

Controllability

An LTI system is controllable if, for every z* and every T > 0, there exists an input
function u(t), 0 < t < T, such that the state goes from z(0) = 0 to z(T) = z*.

There exists an input that can move the system from any state to any other state in
finite time.

Note that this doesn’t mean that the system can be held in that state.

Controllability Test

The LTI system (A, B) is controllable if and only if
rank C = rank [B AB A’B ... A"_IB] =n
where A € R™*™

Note that we can place the poles of the closed-loop system if and only if the
system is controllable, since we must invert the controllability matrix.

Impact of Controllability on State Gain

Compute a linear state feedback controller to place the closed-loop poles at the
roots of s2 + 2Cwns + w?
1
—2

A:[—7 1}
—-12 0

c=[1 o

s
Il

!
Il
o

Compute the closed-loop characteristic equation
det(sI — (A — BK)) = §° + (K1 — Kozo + 7)s — 12K — K120 — TKozo + 12
=g+ 2¢wn s + wi

20(14Cwn — 37 — w?) + 12(2Cwn — 7) 20(7 — 2Cwn) + 12 — w2
K, = Koy =

(z0 +3)(z0 +4) N (z0 +3)(z0 +4)




Impact of Controllability on State Gain

Take ¢ = 0.5, w, = 2, and we get the controller

Controller gain || K||

Transfer function of open-loop system is

" (20 +3)(20 +4)

System looses
controllability
I I I

1

{72720 5z0 + 8:|

N

|
= [Ty
o

|
-
|
(=2
|
ot
|
o
|
w
|
[\
|
J
o bl ol vl ol

(s + 4;(5 +3)

Zero almost cancels one of the poles — Higher gain is required to compensate

Modal Canonical Form

Modal Canonical Form

p1 1
T = 7 4F u
Pn 1
y:[rl rn}a:
T1 1 €T ,—| s+ 2
= 2 O—Y P
> S = Gls) s24+Ts+ 12
2 -1
<_ Ts+4 s5+3
) 1 |22
- -1
O . . :)4 03} B ﬂ

Modal Canonical Form

Assume that the transfer function has distinct real poles p;’

N(s)

G(s) =

) = G2 )
_ T1 T2 Tn
T s—p1 S—p2 S —Pn

Define a set of first-order systems, each with their own state

X1 _ _n — L1 = pi1T1 +riu
U(s) s—m

Xo T2 .

@ =3 — — T2 = p222 + T2U
Xn = _In — Tn = Pnn + Tnl
U(S) s 7pn n nLn n

This extends to repeated and complex poles as well, but the resulting A-matrix is no longer diagonal.

37

Transformation to Modal Form

Compute the modal form of the system
& = Az + Bu
y=Czx
Compute eigenvalue decomposition of A = TAT ! (assuming A is diagonalizable)
Apply the state transformation z = Tz
3=T 'AT24+ T 'Bu=Az+T 'Bu

y=CTz+ Du

Note that if row i of 77! B is zero, then the input cannot impact mode 4, and the
model is uncontrollable.

39



Compute the modal form of the model Compute the modal form of the model
A— -7 1 B— 1 _ -7 1 B— 1
—12 0 3 —12 0 3
c=[1 o D=0 c=[1 o D=0
— — =4 _ — . =4
A_p |7 0] oo [703162 —02425 I e U _ |-0.3162 —0.2425
0 -3 —0.9487 —0.9701 0 -3 —0.9487 —0.9701
Modal form

Co[-4 0 ~3.1623
z= z+ u
0 -3 0

y= [—0.3162 —0.2425] 2

Where we see from B, that the input has no effect on the second mode 2.

40

Reference Tracking

40
Reference Tracking

If the state input pair (zss, uss) satisfies the conditions

0= Azss + Buss — Steady-state

r = Cxss + Duss — Output equal to the reference

and the control law u = uss — K(x — xs5) is applied, then

Reference Tracking lim y(t) =

t— o0

Apply control law u = uss — K(z — 2s5)
& = Az + Buss — BK(x — x55)
& — Zss = Ax 4+ Buss — BK(x — 45) — Axss — Bugs Add zero to both sides
d(r — xss)
dt

The matrix (A — BK) has all eigenvalues in the negative half space. Therefore x
will converge to zss, and u t0 uss.

= (A - BK)(x — xs5)



Parameterize the steady-state as a function of r Compute full-state linear controller such that the closed-loop poles are —6 and —5
and to track references for the following system.

Tss 0 Ny
T = T
Uss 1 Ny . 1 1 1
=1 9" o

The controller is now
= o

A B
C D

u

U =uss — K(x —xs5) = Nyr — Kz + KN,r
=—Kz+ (N, + KNg)r = — Kz + Nr

i@—» System Y R —»Q—» System |—> Y
xT
: A —

42 43

Implement the control law
u=—-Kz+ Nr=— [14 57] x — 157

Compute full-state linear controller such that the closed-loop poles are —6 and —5
and to track references for the following system.

.[11 1
T =

u

1 2" o

>
y:[l 0] é‘ 0[\ i
(@]

We previously computed the pole placement control law
K= {14 57] ]

Reference computation [\_
20 -

-1

- 11 1] ' Jo 1
Ne A B 0 1 20 0 0.5 >
— _ - |o. = B il
N, C D 1 a 0
10 0 |1 ~05 £
—920 |- |
_ 1 —
N =(Ny+KN,) =05+ [14 57] { } - 15 ‘ ‘ ‘ ‘ ‘
—05 0 2 4 6 8 10 12

44

43 Time (sec)



What are Good Pole Locations?

There are many ways to do this depending on the goals and the system. e.g,
1. Place dominant second-order poles
- Choose location for the ‘main’ behaviour, and damp the rest of the modes quickly

2. Model matching
- Choose from a parameterized prototype response

3. Optimal control - Linear Quadratic Regulator
Selection of Good Pole Locations - Define a ‘cost function” and select poles to minimize it

Pole selection is often an iterative scheme before finding the best location.

We will cover the first two now, and return to the third later.
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Dominant Second Order Poles Example - Placement of Dominant Mode

Idea: Chose the closed-loop system to have an almost second-order response Design a state-feedback control law so the closed-loop system has no more than
a 5% overshoot and a settling time less than 10 seconds.
- Use time-domain specifications to locate dominant poles

0 2 0 0 0 0

§% 4 2wns + w? -0.1 —-035 0.1 0.1 0.75 0

A= 0 0 0 2 0 B=10

using e.g., overshoot, settling time, etc 04 04 —04 —14 0 0

- Place the remaining poles so that they are ‘much faster’ 0 -003 0 0 -1 1

- e.g, keep damped frequency wg and move real part to be 2x-3x faster than
dominant poles

Some principles to keep in mind in order to minimize control effort

- It takes more control effort the farther poles are moved

- Moving almost uncontrollable modes is more difficult
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Example - Choose Target Model

Select second-order poles for 5% overshoot and a rise time less than 4 seconds.
Percent overshoot less than 5%

P.O. == M, x 100% = 100e~¢/V1=¢
¢ My
In(Mp)? + 72
Choose ¢ = 0.7

Settling time less than 10 sec
Time to settle to within 6 = 1% percent of the steady-state value.

—logd 46 _ 4.6

# Cwn  Cwn o
4.6
10 > —
Ofgwn
4.6 1
> —— =0.
— 10 0.7 0.66

Choose wy, = 0.7

Overshoot of 8% Settling time 10 sec

Input u
o

\ \ \
0 20 40 60 80 100 120

Time (sec)
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Example - Choose Target Model

Idea: Place remaining three poles faster than the dominant mode.

Natural frequency of dominant mode is w,, = 0.7.
Choose remaining poles approx 4x faster. (rule of thumb)

Desired poles are now
P=uwn [—g+z\/1—g2 (=i T -4 —4 —4]

—0.7 [70.707“0.707 —0.707 —i0.707 —4 —4 74}

; -0.1 -0.35 0.1 0.1 0.75; 000 2 0; 0.4 0.4 -0.4 -1.4 0; ...

zeta = 0.707;
P =wn * [roots([1 2%zeta 1]); -4xones(3,1)];

10 K= acker(A,B,P);

Example - Slower Non-dominant Poles

Place non-dominant poles at —1

1

Output y
o

Input u
o
\\

|
0 20 40 60 80 100 120
Time (sec)

Non-dominant poles influence behaviour. Settling time slower. 51



Example - Faster Non-dominant Poles

Place non-dominant poles at —10

Input u

Gain is extremely high to move non-dominant poles to a high frequency.

—200 |-

20

40 60

Time (sec)

100

120
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Response of Bessel Filter

Step response of bessel filters

Output y

1.2

0.8 -

0.6 |-

0.4

0.2

0.2

First-order

I

10" -order

0.4

0.6

0.8 1
Time (sec)

1.2

1.4

1.6

1.8
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Model Matching

Idea: Select characteristic equation that is known to give a good response

For example, the reverse Bessel polynomials are given by:

0n(s) = z aps”
k=0

where
(2n — k)!
= —— =0,1,...
W= =y T Ohem
n=1 01(s)=s+1
n=2 Os(s) = s* +3s+3
n=3 03(s) = 5° + 65> + 155 4 15
n=4 04(s) = 5" + 105 + 455 + 1055 + 105

)
n=>5 05(s) = s° + 155" + 1055 + 4205> 4 9455 + 945

53

Example - Bessel Filter

Design a state-feedback control law so the the closed-loop system has no more
than a 5% overshoot and a settling time less than 10 seconds.

0 2 0 0 0
-0.1 -035 01 0.1 0.75
A= 0 0 0 2 0 B =
04 04 04 -14 O
0 -003 0 0 -1

= O O O O

Fifth-order reverse Bessel function has poles

P =
[70.5906 +0.9072¢  —0.5906 — 0.9072¢ —0.8516 + 0.4427¢ —0.8516 — 0.4427% 70.9264}

Use place to place the poles at P/Ts = P/10:

K = 10.1571 0.2234 —0.0434 0.0345 —0.1912
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There are many ways to do this depending on the goals and the system. e.g,

Bessel Filter
I T I T I

1. Place dominant second-order poles
- Choose location for the ‘main’ behaviour, and damp the rest of the modes quickly

1,

B>
5
g 0 |
5 .
o 2. Model matching
1 | - Choose from a parameterized prototype response
3. Optimal control - Linear Quadratic Regulator
Define a ‘cost function” and select poles to minimize it
Pole selection is often an iterative scheme before finding the best location.

We will return to LQR control later on.

Input u

| |
40 60 80 100 120
Time (sec)
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0 20

Easy to tune and good response.
56



